
A Shift Gray Code for Fixed-Content
 Lukasiewicz Words

Paul W. Lapey1 and Aaron Williams1[0000−0001−6816−4368]

Williams College, Williamstown MA 01267, USA
{pwl1,aaron.williams}@williams.edu

https://csci.williams.edu/people/faculty/aaron-williams/

Abstract. A Lukasiewicz path of length n is a lattice path from (0, 0)
to (n, 0) that never goes below the x-axis, and which uses steps of the
form (1, i) for integers i ≥ −1. These paths include both Dyck paths
(i ∈ {−1, 1}) and Motzkin paths (i ∈ {−1, 0, 1}). A set of fixed-content
 Lukasiewicz paths contains all such paths in which the frequency of each
step is fixed. For example, is the only path with one (1, 3) step
and three (1,−1) steps; equivalently, the only Lukasiewicz word with
content {−1,−1,−1, 3} is 3 −1 −1 −1 (or 4000 using 0-based values).
We contribute a shift Gray code for these fixed-content sets, meaning
that consecutive paths differ by moving a single line, and consecutive
words differ by moving a single symbol. We also provide a successor rule
for generating the next word directly from the current word, as well as
loopless array-based algorithms for generating generalized fixed-content
Motzkin and Schröder words. Our Gray code generalizes the cool-lex
order Gray code for Dyck words.

Keywords: Lukasiewicz path · Lukasiewicz word · Dyck word · Motzkin
word · fixed-content · Gray code · cool-lex order.

1 Introduction

When the nodes of an ordered tree are labeled by their number of children,
then a preorder traversal gives a Lukasiewicz word. In this paper, we efficiently
order and generate Lukasiewicz words. More specifically, we consider sets of
fixed-content Lukasiewicz words, which contain strings with the same multiset
of symbols (see Figure 1). These sets of strings correspond to ordered trees with
the same branching sequence (see Figure 2).

Our first result is a left-shift Gray code for fixed-content Lukasiewicz words,
meaning that each string is obtained from the previous by moving one sym-
bol to the left (see Figure 4). There is also a relatively simple successor rule
that provides the shift (see (4)) and the resulting order is a cool-lex variant
of lexicographic order. Our second result is loopless (i.e., worst-case O(1)-time
per string) array-based implementation for generating the special case of fixed-
content Motzkin words. Both the shift Gray code and loopless algorithm gen-
eralize previous results for Dyck words, binary trees, and ordered trees [15, 9];

2 P. Lapey and A. Williams

alternate generalizations to k-ary Dyck words [5, 4] and binary bubble languages
[13, 23] have also been considered.

To our knowledge, this paper represents the first shift Gray code for fixed-
content Lukasiewicz words. Many previous investigations have focused on differ-
ent orders for related sequences and special cases of these words [2, 3, 8, 11, 20, 21,
24]. For additional background we refer the reader to Knuth’s coverage of gener-
ating combinatorial objects in Volume 4A of The Art of Computer Programming
[7], and Mütze’s recent update [10] of Savage’s classic survey [17].

Section 2 introduces the relevant combinatorial objects, Section 3 provides
the successor rule for generating our shift Gray codes, and Section 4 proves that
the rule is correct. Section 5 provides our loopless algorithm for fixed-content
Motzkin words, with Python code in the Appendix.

2 Background

In this background section, we discuss the combinatorial objects that will be
generated in this paper, as well as their history and encodings.

2.1 Lattice Paths: Dyck, Motzin, Schröder, and Lukasiewicz

Lattice paths are well-studied in combinatorics, with books on the subject dating
back to the 1970s (see Narayana [12]). In particular, most readers will be familiar
with Dyck paths, which are paths from (0, 0) to (2n, 0) using 2n steps of the
form (1, 1) (north-east) and (1,−1) (south-east), and having the property that
the path never goes below the x-axis. These paths can be encoded as balanced
parentheses, or as integer strings according to several possible encoding schemes.

• North-east steps are 1 and south-east steps are 0. With this encoding, every
prefix must have as many 1s as 0s.
• North-east steps are 1 and south-east steps are −1. With this encoding, every

prefix must have a non-negative sum.
• North-east steps are 2 and south-east steps are 0. With this encoding, every

prefix’s sum must be at least as large as its length.

All of these encodings have been referred to as Dyck words of order n. We refer
to the latter two as the −1-based encoding and the 0-based encoding, respectively.
For example, the five Dyck words of order n = 3 are

{[] [] [], [] [[]], [[]] [], [[] []], [[[]]]} = {202020, 202200, 220020, 220200, 222000}

when using balanced parentheses and the 0-based encoding, respectively.
Many generalizations of Dyck paths and Dyck words have been studied under

the name generalized Dyck words. For example, one can consider multiple types
of parentheses simultaneously (e.g., ‘(’ with ‘)’ and ‘[’ and ‘]’), or have longer
inequality chains (e.g., every prefix has as many 2s as 1s as 0s).

Another approach is to vary the steps. For example, a k-ary Dyck path of
order n is a path from (0, 0) to (kn, 0) using kn steps of the form (1, k − 1) and

A Shift Gray Code for Fixed-Content Lukasiewicz Words 3

(1,−1) while never going below the x-axis. The corresponding k-ary Dyck words
can again be encoded in several ways, and Dyck words are obtained when k = 2.

A broader step-based generalization is a Lukasiewicz path, which is a path
from (0, 0) to (n, 0) that does not go below the x-axis, and which uses steps (1, i)
for any integer i ≥ −1. These paths can be encoded as strings by generalizing
either of the last two encodings for Dyck words discussed above.

• −1-based encoding : Each (1, i) step is encoded as i, and every prefix must
have a non-negative sum.

• 0-based encoding : Each (1, i) step is encoded as i+ 1, and the sum of every
prefix must be at least as large as its length.

We prefer the 0-based encoding, and refer to these strings as Lukasiewicz words of
order n. Figure 1 illustrates all Lukasiewicz paths and words for n = 4. Although
 Lukasiewicz paths include Dyck paths, they differ in their use of n and the term
order. In particular, the middle row of Figure 1 includes all Dyck words of order
4
2 = 2, since the order of a Dyck word is its number of pairs.

 Lukasiewicz paths include Dyck paths when the steps are (1, i) for i ∈
{−1, 1}. They also include Motzkin paths, where i ∈ {−1, 0, 1}. A 0-based encod-
ing is typically used for the corresponding Motzkin words, with {111, 120, 201, 210}
containing the four options when n = 3. The closely related Schröder paths differ
from Motzkin paths in using an east step of (2, 0) rather than (1, 0). For example,
the six Schröder words of order n = 2 are {11, 120, 201, 210, 2200, 2020}.

The Dyck, Motzkin, and Schröder paths of order n are enumerated by the nth
Catalan number, Motzkin number, and big Schröder number, respectively. These
sequences are illustrated below for n ≥ 0 along with their respective entries in
the Online Encyclopedia of Integer Sequences (OEIS) [18]:

Cn = 1, 1, 2, 5, 14, 42, 132, . . . OEISA000108 (1)

Mn = 1, 1, 2, 4, 9, 21, 51, . . . OEISA001006 (2)

Sn = 1, 2, 6, 22, 90, 394, 1806, . . . OEISA006318 (3)

The Lukasiewicz paths of order n are enumerated by Cn+2. Due to their con-
nections with Cn,Mn, and Sn, these paths are in bijective correspondence with
many interesting combinatorial objects, with Stanley’s book, Catalan Numbers,
outlining hundreds of examples [19]. In particular, Lukasiewicz paths have a
particularly nice mapping to rooted ordered trees with n+ 1 internal nodes (see
Figure 2), and for convenience, each node is labeled by its number of children.
These 0-based words have also been referred to as preorder codewords [1].

 Lukasiewicz paths are named after Jan Lukasiewicz for whom reverse Polish
notation is also named. For historical notes on Lukasiewicz’s life and mathemat-
ics see [6]. When considering Lukasiewicz paths for the first time, it is helpful
to note that paths of order n can use steps of maximum slope (1, n − 1), since
otherwise there won’t be enough (1,−1) steps to return to the x-axis at position
(n, 0). This restriction also ensures that there are a finite number of such paths
for all n. See [2] for a discussion of more general lattice paths using the Ban-
derier–Flajolet model, including excursions, which are paths from (0, 0) to (n, 0)
that do not go below the x-axis, and which use steps (1, i) for any integer i.

4 P. Lapey and A. Williams

4 0 0 0

The Lukasiewicz paths with content {0, 0, 0, 4} using 0-based strings.
Note: The content is {−1,−1,−1, 3} when using (91)-based meander strings,

or {0, 0, 1} for 3-ary Dyck words.

3 1 0 0 3 0 1 0 3 0 0 1 1 3 0 0

The Lukasiewicz paths with content {0, 0, 1, 3}.

2 2 0 0 2 0 2 0

The Lukasiewicz / Schröder / Motzkin / Dyck paths with content {0, 0, 2, 2}.
Note: The content is {[, [,],]} for Dyck words or {0, 0, 1, 1} for 2-ary Dyck words.

2 1 1 0 2 1 0 1 2 0 1 1 1 2 1 0 1 2 0 1 1 1 2 0

The Lukasiewicz / Motzkin paths with content {0, 1, 1, 2}.
Note: The content is {d, h, h, u} when referring to up, down, and horizontal moves.

1 1 1 1

The Lukasiewicz / Motzkin paths with content {1, 1, 1, 1}.

Fig. 1: All C4 = 14 Lukasiewicz paths of order 4 are partitioned into rows by
their content (i.e., their multiset of slopes). The bottom three rows have all
M4 = 9 Motzkin paths of order 4. The middle row has all C2 = 2 Dyck paths
of order 2. The top row has the C31 = 1 3-ary Dyck path of order 1. Each row
is ordered lexicographically by the path’s 0-based string. Other encodings are
noted. For example, the second path in the middle row is encoded as 2020 (0-
based), 1 −1 1 −1 ((−1)-based), udud (moves), [] [] (Dyck word), or 1010 (2-ary
Dyck word). Our main results involve ordering and generating Lukasiewicz words
(i.e., the 0-based strings) for a given content (i.e., multiset of symbols). In other
words, we focus on the strings listed in the types of rows shown above.

A Shift Gray Code for Fixed-Content Lukasiewicz Words 5

0

4

0 00 0

1

1

1

1

0

3

1 0

0

0

3

1 0

0

0

3

1 0

0

0

2

1

0

1

0

3

0 0

1

0

2

1

1

0

1

2

1

00

1

2

0

1

0 0

2

0

1

1

1

2

0

1

0

2

2

0

00

0

2

2

00

0

4

0 00 0

1

1

1

1

0

3

1 0

0

0

3

1 0

0

0

3

1 0

0

0

2

1

0

1

0

3

0 0

1

0

2

1

1

0

1

2

1

00

1

2

0

1

0 0

2

0

1

1

1

2

0

1

0

2

2

0

00

0

2

2

00

1

1

1

1

0
2

2

0

00

0

2

2

00

0

4

0 00 0

1

1

1

1

0

3

1 0

0

0

3

1 0

0

0

3

1 0

0

0

2

1

0

1

0

3

0 0

1

0

2

1

1

0

1

2

1

00

1

2

0

1

0 0

2

0

1

1

1

2

0

1

0

2

2

0

00

0

2

2

00

1

1

1

1

0

Fig. 2: The C4 = 14 Lukasiewicz word of order n = 4 are in one-to-one correspon-
dence with the rooted ordered trees with n+ 1 = 5 internal nodes. Given a tree,
the corresponding word is obtained by recording the number of children of each
node in a preorder traversal; the last 0 (from the rightmost leaf) is omitted. For
example, the two trees in the middle section correspond to 2200 (top) and 2020
(bottom). The trees are partitioned based on their branching sequence, which
corresponds to the content of the associated Lukasiewicz words (see Figure 1).

2.2 Restriction to Fixed-Content

Lattice paths are often restricted in various ways when they are studied. We
focus on content, which refers to the multiset of symbols used in a word, or
equivalently, the multiset of steps used in a path. We use the term fixed-content
to refer to all Lukasiewicz words, or paths, with the same content. We use L(S)
to denote the set of (0-based) Lukasiewicz words with content S, where S is a
multiset of non-negative integers whose sum is equal to its cardinality. For ex-
ample, the Lukasiewicz paths in Figure 1 are partitioned into fixed-content parts
— L({0, 0, 0, 4}); L({0, 0, 1, 3}); L({0, 0, 2, 2}) ; L({0, 1, 1, 2}) ; L({1, 1, 1, 1}) —
where {} or [] denotes multiset content.

The restriction to fixed-content is useful for several reasons. For example,
 Lukasiewicz paths generalize Dyck paths in the sense that the set of allowed steps
is broadened. But it is not true that the set of Lukasiewicz paths of order n gen-
eralize the set of Dyck paths of order n; more precisely, they form a superset. On
the other hand, fixed-content Lukasiewicz words do generalize Dyck words in this
sense. For example, {202020, 202200, 220020, 220200, 222000} is both the set of
Dyck words of order n = 3 (using 0-based encoding), and the Lukasiewicz words
with fixed-content [0, 0, 0, 2, 2, 2]. Similarly, fixed-content Lukasiewicz words gen-
eralize both fixed-content Motzkin words and fixed-content Schröder words. For
example, {120, 201, 210} is the set of Motzkin, Schröder, and Lukasiewicz words
with content [0, 1, 2]. Note that in this example, the Motzkin and Lukasiewicz
words have order n = 3, while the Schröder words have order n = 4.

The Motzkin and Schröder numbers are partitioned by their content in OEIS
A055151 and A088617, respectively. For example, the row 1, 6, 2 in the left
triangle corresponds to the number of Motzkin objects in the bottom three
rows of Figure 1 and the right three columns of Figure 2 (although the order
is reversed). The same values appear diagonally in the right triangle due to the
differing order of the corresponding Schröder objects. (Due to the greater variety,

6 P. Lapey and A. Williams

it is less obvious how to order the analogous quantities for Lukasiewicz words,
and the authors did not find a corresponding OEIS sequence.)

A055151
1
1
1 1
1 3
1 6 2
1 10 10
1 15 30 5

A088617
1
1 1
1 3 2
1 6 10 5
1 10 30 35 14
1 15 70 140 126 42
1 21 140 420 630 462 132

Placing a fixed-content restriction on a set of strings can also coincide with
a meaningful restriction in corresponding combinatorial objects. For example,
restricting Lukasiewicz words to fixed-content corresponds to restricting rooted
ordered trees to a specific branching sequence. The branching sequence of a
rooted tree is the sorted list of the number of children of each node in the
tree. For example, the fourth section of Figure 2 shows the ordered trees with
branching sequence 0, 0, 1, 1, 2, which correspond to the Lukasiewicz words with
content {0, 1, 1, 2} (as one copy of 0 is omitted).

2.3 Gray Codes for Lattice Paths and Strings

In this paper, we are not concerned with counting lattice paths, but in efficiently
ordering them. More specifically, we want to create a minimal-change order, or
Gray code, which means sequencing the objects so that each differs from the
previous in a specific small way. Our orders are also cyclic, in the sense that the
last object can be transformed into the first via the same type of small change.

When constructing Gray codes, it is helpful to think about the underlying
graph of objects and allowable changes. For example, Figure 3a illustrates the
six Lukasiewicz words with content {0, 1, 1, 2} as vertices, with edges connecting
those that differ by a swap. A swap, or adjacent-transposition, interchanges two
symbols that are immediately next to each other in the string. For example,
swapping 20 with 02 changes a peak to a valley in the corresponding lattice
path, and it is only valid if the path was above the x-axis at that location prior
to the swap. Observe Figure 3a does not have a Hamilton path, so L({0, 0, 1, 2})
does not have a swap Gray code. Thus, we need to broaden our notion of a
minimal change in order to create a Gray code for these objects.

One generalization1 of an adjacent-transposition is a shift, in which a single
symbol is moved to another position. Figure 3b illustrates the associated graph,
and in this case, there is a Hamilton cycle. Thus, there is a cyclic shift Gray code
for this set of strings, and one could hope to prove that such a Gray code always
exists for fixed-content Lukasiewicz words. We aim slightly higher by considering
a more restrictive notion of a minimal-change. A left-shift moves a single symbol

1 Another generalization is a transposition, in which two values are interchanged, with-
out the restriction that they must be next to each other in the string.

A Shift Gray Code for Fixed-Content Lukasiewicz Words 7

2110

2011

2101

1210

1201

1120

(a) Swap Graph

2110

2011

2101

1210

1201

1120

(b) Shift Graph

2110

2011

2101

1210

1201

1120

(c) Left-Shift Graph

Fig. 3: Graphs associated with Gray codes of L(S) for S = {0, 1, 1, 2}.

somewhere to the left within a string. More specifically, if α = a1 · a2 · · · an is a
string and i < j, then we let

leftα(j, i) = a1 · a2 · · · ai−1 · aj · ai · ai+1 · · · aj−1 · aj+1 · aj+2 · · · an.

In other words, leftα(j, i) shifts aj to the left into position i. Observe that leftα(i+
1, i) is an adjacent-transposition or swap. We also omit α from this notation
when the context is clear. The directed graph for L({0, 0, 1, 2}) with left-shifts
appears in Figure 3c. This graph has a directed Hamilton cycle, and hence,
L({0, 0, 1, 2}) has a cyclic left-shift Gray code. We will establish this result for
all sets of fixed-content Lukasiewicz words.

3 Successor Rule

In this section, we provide a successor rule that applies a left-shift to a Lukasiewicz
word. The rule is given below in (4). In the statement of the rule, we assume
that α = a1 · a2 · · · an ∈ L(S), where S is a multiset whose sum is equal to its
cardinality. We also assume that ρ = a1 · a2 · · · am is α’s non-increasing prefix.
In other words, a1 ≥ a2 ≥ · · · ≥ am, and either m = n (i.e., the entire string is
non-increasing) or am < am+1 (i.e., there is an increase immediately following
the prefix). The sum of the symbols in ρ is

∑
ρ = a1 + a2 + · · ·+ am.

next(α) =

left(n, 2) if m = n (4a)

left(m+ 1, 1) if m = n− 1 or am < am+2 or (4b)

(am+2 = 0 and
∑
ρ = m)

left(m+ 2, 1) if am+2 6= 0 (4c)

left(m+ 2, 2) otherwise (4d)

Figure 4 illustrates the successor rule on every string in L(S) for S =
{0, 0, 0, 1, 2, 3}. For example, consider the top row with α = a1 ·a2 ·a3 ·a4 ·a5 ·a6 =
302100. Here the non-increasing prefix is a1 · a2 = 30, so m = 2, and the length
of the string is n = 6. Thus, m 6= n, so (4a) is not applied. Now consider the
conditions in (4b). The second condition is am < am+2, which is a2 = 0 < 1 = a4
for α. Since this is true, next(α) = left(m+ 1, 1) by (4b), which is left(3, 1) for
α. In other words, the rule left-shifts a3 into position 1. Thus, the next string in
the list is a3 · a1 · a2 · a4 · a5 · a6 = 230100, as seen in the second row of Figure 4.

8 P. Lapey and A. Williams

 Lukasiewicz path Lukasiewicz word m (4) shift scut

302100 2 (4b) left(3, 1) 100

230100 1 (4d) left(3, 2) 100

203100 2 (4b) left(3, 1) 100

320100 3 (4d) left(5, 2) 100

302010 2 (4d) left(4, 2) 10

300210 3 (4b) left(4, 1) 10

230010 1 (4d) left(3, 2) 10

203010 2 (4b) left(3, 1) 10

320010 4 (4d) left(6, 2) 10

302001 2 (4d) left(4, 2) 1

300201 3 (4b) left(4, 1) 1

230001 1 (4d) left(3, 2) 1

203001 2 (4b) left(3, 1) 1

320001 5 (4b) left(6, 1) 1

132000 1 (4b) left(2, 1) 2000

312000 2 (4d) left(4, 2) 2000

301200 2 (4b) left(3, 1) 200

130200 1 (4b) left(2, 1) 200

310200 3 (4d) left(5, 2) 200

301020 2 (4d) left(4, 2) 20

300120 3 (4b) left(4, 1) 20

130020 1 (4b) left(2, 1) 20

310020 4 (4b) left(5, 1) 20

231000 1 (4c) left(3, 1) 31000

123000 1 (4b) left(2, 1) 3000

213000 2 (4d) left(4, 2) 3000

201300 2 (4b) left(3, 1) 300

120300 1 (4b) left(2, 1) 300

210300 3 (4b) left(4, 1) 300

321000 6 (4a) left(6, 2) ε

Fig. 4: The left-shift Gray code cool(S) for Lukasiewicz words with content S =
{0, 0, 0, 1, 2, 3}. Each row gives the non-increasing prefix length m, the rule (4),
and the shift that creates the next word. The right column gives the scut of each
string, which illustrates the suffix-based recursive definition of cool-lex order.

A Shift Gray Code for Fixed-Content Lukasiewicz Words 9

3.1 Observations

Note that (4) left-shifts a symbol that is at most two symbols past the non-
increasing prefix. Thus, the shifts given by (4) are usually short, and the symbols
at the right side of the string are rarely changed. This implies that the order will
have some similarity to co-lexicographic order, which orders strings right-to-left
by increasing symbols. In fact, the order turns out to be a cool-lex order, as
discussed in Section 4.

4 Proof of Correctness

Now we prove that the successor rule is correct. Our strategy is to define a
recursive order of L(S), and show that (4) creates the next string in this order.

4.1 Cool-lex Order

Cool-lex order is a variation of co-lexicographic order. The order was first given
for (s, t)-combinations, which are binary strings with s copies of 0 and t copies of
1, by Ruskey and Williams [14, 16]. In this context, the order gives a prefix-shift
Gray code, meaning that a single symbol is left-shifted into the first position.
The prefix-shift Gray code was then generalized to Dyck words [15] and multiset
permutations [22]. The latter result provides the recursive structure of our left-
shift Gray code of fixed-content Lukasiewicz words.

Tails and Scuts Given a multiset S of cardinality n, we define the tail of length
` to be smallest ` symbols arranged in a string in non-increasing order. Formally,

tail(`) = t` · t`−1 · · · t2 · t1, (5)

where tail(n) = tn ·tn−1 · · · t1 is the unique non-increasing string with content S.
In English, a scut is a short tail. We use the term for a tail that is truncated

by the addition of a large first symbol. More specifically, a scut of length ` and
a tail of length ` are identical, except for their first symbol, and the first symbol
is larger in the scut. Formally, the scut of length `+ 1, with respect to S is

scut(s, `) = s · tail(`), (6)

where s ∈ S is greater than the first symbol tail(`+ 1). We refer to a scut of the
form scut(s, `) as an s-scut.

Recursive Order Now we define cool(S) to be an order of L(S). More broadly,
we define cool(S) on any multiset S with non-negative symbols whose sum is at
least as large as its cardinality, and we henceforth refer to these S as valid. We
define cool(S) recursively by grouping the strings with the same scut together.
Specifically, the scuts are ordered as follows:

10 P. Lapey and A. Williams

– The scuts are first ordered by their first symbol in increasing order. In other
words, s-scuts are before (s+ 1)-scuts.

– For a given first symbol, the scuts are ordered by decreasing length. In other
words, longer s-scuts come before shorter s-scuts.

– The string tail(n) is the only string without a scut, and it is ordered last.

For example, the rightmost column of Figure 4 illustrates this order. More specif-
ically, the scuts appear in the following order:

100, 10, 1, 2000, 200, 20, 31000, 3000, 300, (7)

with the single string tail(n) = 321000 appearing last. Note that 2, 30 and 3 are
absent from (7) because there are no Lukasiewicz words with these suffixes.

In each scut group the strings are ordered recursively. In other words, the
common scut is removed from the strings in a particular group, and then they
are ordered according to cool(S′), where S′ is the valid multiset obtained by
removing the symbols of the common scut from S. For example, in Figure 4, the
strings with scut 1 are ordered according to cool(S′) where S′ = {3, 2, 1, 0, 0, 0}−
{1} = {3, 2, 0, 0, 0}. The base case of the recursion is when S = ∅.

In the following subsection it will be helpful to know the first string that has
an s-scut. By our recursive order, we know that it will have a longest s-scut.
Moreover, the exact string can be obtained from the tail by a single shift. To
illustrate this, consider the list in Figure 4, and let α = tail(n) = 321000.

– The first string with a 1-scut is leftα(4, 2) = 302100.
– The first string with a 2-scut is leftα(3, 1) = 132000.
– The first string with a 3-scut is leftα(2, 1) = 231000.

In other words, the first string with a 1-scut is obtained by shifting a 0 into the
second position, with the first strings with 2-scuts and 3-scuts are obtained by
shifting 1 and 2 into the first position, respectively. This point is stated more
generally in the following remark.

Remark 1. Let S be a valid multiset, and tail(n) = tn · tn−1 · · · t1 with ti > ti−1.
The first string in cool(S) with a ti-scut is lefttail(n)(n − i + 2, 1) if ti−1 = 0 or
lefttail(n)(n− i+ 2, 2) if ti−1 > 0.

4.2 Equivalence

Now we prove that the successor rule (4) correctly provides the next string in
cool(S). This simultaneously proves that (4) is a successor rule for a left-shift
Gray code of L(S), and that cool(S) is a recursive description of the same.

Theorem 1. Let S be a multiset of non-negative values with cardinality n and
sum ΣS = n. Also, let α ∈ L(S) be a Lukasiewicz word with content S, and
β ∈ L(S) be the next string in cool(S) taken circularly (i.e., if α is the last
string in cool(S), then β is the first string in cool(S)). Then β = leftα(j, i). In
other words, the successor rule in (4) transforms α into β with a left-shift.

A Shift Gray Code for Fixed-Content Lukasiewicz Words 11

Proof. Let α = a1 · a2 · · · an and ρ = a1 · a2 · · · am be α’s non-increasing prefix.
– If m = n, then α = tail(n) and it is the last string in cool(S). We also know

that next(α) = left(n, 2) by (4a). This gives the first string in cool(S) with
a 1-scut by Remark 1, which is the first string in cool(S) as expected. This
is the only case where (4a) is used.

– If m = n − 1, then α’s non-increasing prefix extends until its second-last
symbol. Furthermore, we know that an = 1, since this is the only non-
zero value that can appear in the rightmost position. We also know that
next(α) = left(m+ 1, 1) = left(n, 1) by (4b). Thus, Remark 1 implies that β
is the first string with an x-scut, where x is the smallest symbol larger than
1 in S. This is expected since α is the last string in the order with a 1-scut.

The remaining cases are handled cumulatively (i.e., each assumes that the pre-
vious do not hold). Note that α = ρ · am+1 · am+2 · · · an is the last string with
scut(am+1, `) = am+1·am+2 · · · aw in a sublist cool(S−{aw+1, aw+2, . . . , an}). We
also view leftα(j, i) in two steps: aj is left-shifted until it joins the non-increasing
prefix, then further to index i. This allows us to use Remark 1.
– If am < am+2, then the scut at this level of recursion, namely scut(am+1, `),

cannot be shortened since ` = 0. So the next scut will be the longest scut
with the next largest symbol, which is true by Remark 1 and next(α) =
left(m+ 1, 1) by (4b).

– If am+2 = 0 and Σρ = m, then the scut cannot be shortened since the sum of
the symbols before the shorter scut will be less than their cardinality. Thus,
the next scut will be the longest scut with the next largest symbol, which is
true by Remark 1 and next(α) = left(m+ 1, 1) from (4b).

– If am+2 6= 0, then the scut at this level of recursion can be shortened to
scut(am+1, ` − 1). Given this shorter scut, the order recursively adds new
scuts beginning with the first x-scut, where x is the second-smallest remain-
ing symbol. This is true by Remark 1 and next(α) = left(m+ 2, 1) by (4c).

– Otherwise, am+2 = 0. This is identical to the previous case, except that
am+2 = 0. Thus, Remark 1 gives next(α) = left(m+ 2, 2) by (4d)

Therefore, (4) gives the next string in the order, which completes the proof.

5 Loopless Algorithm for Fixed-Content Motzkin Words

We now use our Gray code for fixed-content Lukasiewicz words to looplessly
generate fixed-content Motzkin words2. More specifically, coolMotzkin is an
array-based algorithm, and each shift is implemented with a constant number of
assignments. Pseudocode is in Figure 5, and Python code is in the Appendix.

The algorithm follows in a similar style to previous array-based algorithms for
generating (s, t)-combinations [14, 16], Dyck words [15], and 1/k-ary Dyck words
in cool-lex order [5, 4]. The former two are provided for the sake of comparison
in Figure 5 under the names coolCombo and coolDyck, respectively.

A loopless cool-lex algorithm for Lukasiewicz words would require a linked list
(as in [22]) since a shift can relocate an arbitrarily number of distinct symbols.

2 As noted in Section 2.1, these strings are also fixed-content Schröder words.

12 P. Lapey and A. Williams

(a) Combinations

coolCombo(s, t)
n← s+ t
b← 1t0s

x← t
y ← t
visit(b)
while x < n do
bx = 0
by = 1
x← x+ 1
y ← y + 1
if bx = 0 then
bx ← 1
b1 ← 0
if y > 2 then
x← 2

y ← 1
visit(b)

(b) Dyck Words

coolDyck(t)
n← 2 · t
b← 1t0t

x← t
y ← t
visit(b)
while x < n do
bx = 0
by = 1
x← x+ 1
y ← y + 1
if bx = 0 then

if x ≥ 2·y−2 then
x← x+ 1

else
bx ← 1
b2 ← 0
x← 3
y ← 2

visit(b)

(c) Motzkin Words

coolMotzkin(s, t)
n← 2 · s+ t
b← 2s1t0s

x← n− 1
y ← t+ s+ 1
z ← s+ 1
visit(b)
while x < n or bx < 2 do
q ← bx−1

r ← bx
if x+ 1 ≤ n then
p← bx+1

bx ← bx−1

by ← by−1

bz ← bz−1

b1 ← r
x← x+ 1
y ← y + 1
z ← y + 1
if p = 0 then

if z − 2 > x− y then
b1 ← 2
b2 ← 0
bx ← r
x← 3
y ← 2
z ← 2

else
x← x+ 1

else if x ≤ n and q ≥ bx then
bx ← 2
bx−1 ← 1
b1 ← 1
z ← 1

if b2 > b1 then
z ← 1
y ← 2
x← 2

visit(b)

Fig. 5: Algorithms for generating (a) (s, t)-combinations, (b) Dyck words, and
(c) fixed-content Motzkin words in cool-lex order. The algorithms are loopless
and store the current string in array b = b1b2 · · · bn (i.e., 1-based indexing). The
parameters s ≥ 2 and t ≥ 2 give the number of 0s (and 2s) and 1s, respectively.
Variables z, y, and x given the index after the 2s, 1s, and 0s in the non-increasing
prefix, respectively. (Their initial values are exceptions to this pattern, and are
set to make the first iteration work correctly.) The start of the while loop shifts
the first increasing symbol to the left (i.e., (4b) in coolMotzkin) and the if
statements identify when this is not the correct shift, and adjust b accordingly.
Also, coolMotzkin uses q, r, p to save the symbols around the first increase.

A Shift Gray Code for Fixed-Content Lukasiewicz Words 13

References

1. Balakirsky, V.B.: A new coding algorithm for trees. The Computer Journal 45(2),
237–242 (2002)

2. Banderier, C., Wallner, M.: The kernel method for lattice paths below a line of
rational slope. In: Lattice path combinatorics and applications. Springer (2019)

3. Dershowitz, N., Zaks, S.: Enumerations of ordered trees. Discrete Mathematics
31(1), 9–28 (1980)

4. Durocher, S., Li, P.C., Mondal, D., Ruskey, F., Williams, A.: Cool-lex order and
k-ary Catalan structures. Journal of Discrete Algorithms 16, 287–307 (2012)

5. Durocher, S., Li, P.C., Mondal, D., Williams, A.: Ranking and loopless generation
of k-ary Dyck words in cool-lex order. In: International Workshop on Combinatorial
Algorithms. pp. 182–194. Springer (2011)

6. Hodgson, J.: Rediscovered: the Jan Lukasiewicz Papers.
https://rylandscollections.com/2018/05/16/rediscovered-the-jan-lukasiewicz-
papers

7. Knuth, D.E.: Art of Computer Programming, Volume 4, Fascicle 4, The: Generat-
ing All Trees–History of Combinatorial Generation. Addison-Wesley (2013)

8. Korsh, J.F., LaFollette, P.: Loopless generation of trees with specified degrees. The
Computer Journal 45(3), 364–372 (2002)

9. Lapey, P.W., Williams, A.: Pop & push: Ordered tree iteration in O(1)-time (2022),
manuscript submitted for publication

10. Mütze, T.: Combinatorial Gray codes-an updated survey. arXiv preprint
arXiv:2202.01280 (2022)

11. Nakano, S.i.: Listing all trees with specified degree sequence (acceleration and vi-
sualization of computation for enumeration problems). RIMS Kôkyûroku Bessatsu
1644, 55–62 (2009)

12. Narayana, T.V.: Lattice Path Combinatorics with Statistical Applications; Math-
ematical Expositions 23. University of Toronto Press (1979)

13. Ruskey, F., Sawada, J., Williams, A.: Binary bubble languages and cool-lex order.
Journal of Combinatorial Theory, Series A 119(1), 155–169 (2012)

14. Ruskey, F., Williams, A.: Generating combinations by prefix shifts. In: Interna-
tional Computing and Combinatorics Conference. pp. 570–576. Springer (2005)

15. Ruskey, F., Williams, A.: Generating balanced parentheses and binary trees by
prefix shifts. In: Proceedings of the fourteenth symposium on computing: the Aus-
tralasian theory-Volume 77. pp. 107–115. Citeseer (2008)

16. Ruskey, F., Williams, A.: The coolest way to generate combinations. Discrete Math-
ematics 309(17), 5305–5320 (2009)

17. Savage, C.: A survey of combinatorial Gray codes. SIAM review 39(4), 605–629
(1997)

18. Sloane, N.J.A., The OEIS Foundation Inc.: The on-line encyclopedia of integer
sequences (2020), https://oeis.org/

19. Stanley, R.P.: Catalan numbers. Cambridge University Press (2015)
20. Van Baronaigien, D.R.: A loopless algorithm for generating binary tree sequences.

Information Processing Letters 39(4), 189–194 (1991)
21. Wallner, M.: Combinatorics of lattice paths and tree-like structures. Ph.D. thesis,

Wien (2016)
22. Williams, A.: Loopless generation of multiset permutations using a constant num-

ber of variables by prefix shifts. In: Proceedings of the twentieth annual ACM-
SIAM symposium on discrete algorithms. pp. 987–996. SIAM (2009)

14 P. Lapey and A. Williams

23. Williams, A.M.: Shift Gray codes. Ph.D. thesis, University of Victoria (2009)
24. Zaks, S., Richards, D.: Generating trees and other combinatorial objects lexico-

graphically. SIAM Journal on Computing 8(1), 73–81 (1979)

A Shift Gray Code for Fixed-Content Lukasiewicz Words 15

Appendix: Python Code

Python3 functions for generating the cool-lex order of (s, t)-combinations, Dyck
words of order t, and fixed-content Motzkin words with s copies of 0 and 2 and
t copies of 1, are found in Figure 63. The first two are found in [14, 16] and
[15], respectively, and the latter is new to this article. To simulate the 1-based
indexing used in Figure 5, we store array b in a list and ignore its first entry
b[0] . Lists are implemented as arrays in CPython, so each read and write is a
worst-case O(1)-time operation. Hence, the implementations are loopless.

def coolCombo(t,s):
..n = s+t
..b = [-1]+[1]*t+[0]*s
..x = t
..y = t
..print(*b[1:],sep="")
..while x < n:
....b[x] = 0
....b[y] = 1
....x += 1
....y += 1
....if b[x] == 0:
......b[x] = 1
......b[1] = 0
......if y > 2:
........x = 2
......y = 1
....print(*b[1:],sep="")

def coolDyck(t):
..n = 2*t
..b = [-1]+[1]*t+[0]*t
..x = t
..y = t
..print(*b[1:],sep="")
..while x < n-1:
....b[x] = 0
....b[y] = 1
....x += 1
....y += 1
....if b[x] == 0:
......if x >= 2*y - 2:
........x += 1
......else:
........b[x] = 1
........b[2] = 0
........x = 3
........y = 2
....print(*b[1:],sep="")

def coolMotzkin(t,s):
..n = 2*s + t
..b = [-1]+[2]*s+[1]*t+[0]*s
..x = n-1
..y = t+s+1
..z = s+1
..print(*b[1:],sep="")
..while x < n-1 or b[x] < 2:
....q = b[x-1]
....r = b[x]
....if x + 1 <= n:
......p = b[x+1]
....b[x] = b[x-1]
....b[y] = b[y-1]
....b[z] = b[z-1]
....b[1] = r
....y += 1
....z += 1
....x += 1
....if p == 0:
......if z-2 > (x-y):
........b[1] = 2
........b[2] = 0
........b[x] = r
........z=2
........y=2
........x=3
......else:
........x+=1
....elif x <= n and q >= b[x]:
......b[x] = 2
......b[x-1] = 1
......b[1] = 1
......z = 1
....if b[2] > b[1]:
......z = 1
......y = 2
......x = 2
....print(*b[1:],sep="")

Fig. 6: Loopless generation of the cool-lex shift Gray codes of (s, t)-combinations,
Dyck words, and fixed-content Motzkin words in Python 3. Each shift is achieved
using a constant number of assignments to the list b.

3 The leading spaces have been replaced with periods to ensure that the code can be
reliably copy-and-pasted from digital versions of this document.

