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Abstract
The number of ordered trees (also known as plane trees) with n nodes is the (n − 1)st Catalan
number Cn−1. An ordered tree can be stored directly using nodes and pointers, or represented
indirectly by a Dyck word. This paper presents a loopless algorithm for generating ordered trees with
n nodes using pointer-based representations. In other words, we spend O(Cn−1)-time to generate
all of the trees, and moreover, the delay between consecutive trees is worst-case O(1)-time.

To achieve this run-time, each tree must differ from the previous by a constant amount. In other
words, the algorithm must create a type of Gray code order. Our algorithm operates on the children
of a node like a stack, by popping the first child off of one node’s stack and pushing the result onto
another node’s stack. We refer to this pop-push operation as a pull, and consecutive trees in our
order differ by one or two pulls. There is a simple two-case successor rule that determines the pulls
to apply directly from the current tree. When converted to Dyck words, our rule corresponds to a
left-shift, and these shift generate a cool-lex variant of lexicographic order.

Our results represent the first pull Gray code for ordered trees, and the first fully published
loopless algorithm for ordered trees using pointer representations. More importantly, our algorithm
is incredibly simple: A full implementation in C, including initialization and output, uses only three
loops and three if-else blocks. Our work also establishes a simultaneous Gray code for Dyck words,
ordered trees, and also binary trees, using cool-lex order.
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1 Introduction

This article is focused on iterating through every ordered tree with n nodes as quickly and
simply as possible. By quickly we mean loopless, which is worst-case O(1)-time per tree.
This means that we store a single ordered tree in memory, and in constant time we change it
into the next tree. In other words, there is always a constant delay between successive trees.

To achieve such an algorithm we need to first develop a suitable order. That is, we need
to create an ordering in which each tree differs from the previous tree by a constant amount.
When measuring the difference between two trees, it is necessary to know how they are
represented, or stored in memory. We focus on link-based representations, in which the
parent-child relationships are specified using pointers or references.

The way in which we operate on the ordered trees is novel. We treat the children of each
node like a stack, and we modify a tree by popping and pushing these stacks. In particular,
a pull involves popping one stack, and pushing the result onto another stack. In other words,
we remove the first subtree of one node, and insert it as the new first subtree of another
node. The pull operation is illustrated in Figure 1.
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53:2 Pop & Push: Ordered Tree Iteration in O(1)-Time

Remarkably, we are able to generate all ordered trees by only pulling subtrees that are
paths. In fact, we create each successive tree using one or two of these more restrictive
path-pull operations. Moreover, the location of the pulled paths is very predictable, which
allows us to locate them in constant time. This point is illustrated in Figure 2. A sample
listing of all ordered trees with n = 6 nodes appears in Figure 6.

YX

··· ···
S1 S2 Si91Si T1 T2 Tj91Tj

(a) Before pullT (Y, X):
S1 is the first subtree of X.

YX

··· ···
S1S2 Si91Si T1 T2 Tj91Tj

(b) After pullT (Y, X):
S1 is the first subtree of Y .

YX
S1

S2

Si91

...

Si

T1

T2

Tj91

...

Tj

Y

(c) Before pullT (Y, X):
S1 is the top of X’s stack.

X
S1

S2

Si91

...

Si

T1

T2

Tj91

...

Tj

Y

(d) After pullT (Y, X):
S1 is the top of Y ’s stack.

Figure 1 The pull operation relocates first subtrees in an ordered tree T . More specifically, if X

and Y are nodes of T , then pullT (Y, X) removes the first subtree of X and adds it as a new first
subtree of Y ; see (a)–(b). In other words, Y pulls X’s first subtree so that it becomes its own first
subtree. The operation is particularly natural when each node stores its subtrees using a stack, since
the pull simply “pops” X’s stack, and “pushes” the result onto Y ’s stack; see (c)–(d).

One of the most notable aspects of our algorithm is its simplicity. Indeed, our C
implementation uses only three loops and three if-else blocks, half of which are used for
initialization and output. Our main result is summarized by the following theorem. Figure 7
provides the main loop of Algorithm O in both pseudocode and C.

▶ Theorem 1. Algorithm O iterates through the ordered trees with n nodes looplessly using
only one or two path-pulls between successive trees.

We refer to the order in which the trees are generated as a Gray code – in reference to
the well-known binary reflected Gray code [8] – meaning that the objects are ordered so that
the next object always differs from the previous object in a constant amount according to
some simple metric. More descriptively, our order is a 2-pull Gray code, since two pulls are
used in the worst-case 1 . Theorem 1 represents the first 2-pull Gray code for ordered trees.

1 The pulled subtrees are always paths, so we could also describe our result as a 2-path-pull Gray code.

root

The first branching (i.e., second-child) that is
traversed during a preorder traversal.

This subtree might be pulled to the root,
but only when it is a single edge, and only
after the previous pull.

This path is pulled up to P ’s parent,
or down to P ’s second child. P

Figure 2 Our Gray code for ordered trees is based on pulls. More specifically, the next ordered
tree is always created by one or two pulls. Furthermore, the pulled subtrees are always paths, and
they are always located on either side of the tree’s first branching in a preorder traversal (in turquoise)
as shown in (b). A successor rule with two cases provides the details in (6) and Figure 5. Figure 7
has loopless (i.e., worst-case O(1)-time per tree) algorithm implementations in pseudocode and C,
with full C implementations (including command-line argument processing) in the Appendices.
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Algorithm O is also the first loopless algorithm for generating ordered trees with a linked-
based representation in which all of the details are provided. The secret to our algorithm is
ordering Dyck words using a variant of co-lexicographic order known as cool-lex order.

1.1 Relationship to Previous Results
Many previous papers have focused on efficiently generating ordered trees, and other closely
related objects, using various representations. For broad overviews of this research area,
we recommend Knuth’s coverage of generating combinatorial objects in Volume 4A of The
Art of Computer Programming [10], and Mütze’s recent update [16] of Savage’s well-known
survey [27]. Many practical programs for generating combinatorial objects can also be found
in Arndt [2], and on the Combinatorial Object Server [17]. Readers are also directed to a
new preprint by Nakano [18] that provides a nice alternative Gray code for ordered trees:
successive trees are obtained by removing a leaf and appending it to another node.

1.1.1 Catalan Objects
Ordered trees are a Catalan object since they are enumerated by the Catalan numbers. More
specifically, the number of ordered trees with n nodes is the (n− 1)st Catalan number Cn−1.
Other well-known Catalan objects include Dyck words and binary trees. A Dyck word of
order n is a binary string with n copies of 1 and n copies of 0, where each prefix has at least
as many 1s as 0s. These strings have a trivial correspondence with balanced parentheses of
length 2n: map 1s to (s and 0s to )s. These sets of strings are shown in (1) for n = 3.

{101010, 101100, 110010, 110100, 111000} {()()(), ()(()), (())(), (()()), ((()))} (1)

Dyck words of order n are counted by the nth Catalan number Cn, as are binary trees with
n nodes. Many previous results have focused on ordering and generating these objects using
different operations, with a very well-known example being binary trees by rotations [14].

1.1.2 Loopless vs Constant Amortized Time
Skarbek [30] provided the first algorithm for generating link-based representations of ordered
trees in constant amortized time (CAT), meaning that the delay is O(1)-time in an amortized
sense, rather than in the worst-case as in a loopless algorithm. Korsh and Lafolette [11]
crafted a loopless algorithm for generating ordered trees with a fixed branching sequence.
In other words, they generated subsets of ordered trees in which the number of children at
each node form the same multiset. Their algorithm used a string-based representation, and
answered an open problem posed by Roelants van Baronaigien [34]. They also stated, in one
sentence, that their results could be adapted to link-based representations. By “layering”
the output of that proposed algorithm, it may be possible to create a loopless link-based
algorithm for generating all ordered trees with n nodes.

Theoretically speaking, loopless algorithms are more significant achievements than CAT
algorithms. In particular, standard lexicographic orders can often be generated in CAT [21],
and this has been accomplished for ordered trees on multiple occasions [7, 19]. However,
loopless algorithms are often less practical than their CAT counterparts for several reasons.

Efficiency. Loopless algorithms typically involve more instructions than CAT algorithms,
and their overall run-times are often longer.
Ease of implementation. Generation algorithms are often ported from one programming
language (or pseudocode) to another, so longer implementations are again less desirable.

ISAAC 2022
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Novelty. Most loopless algorithms involve the creation of a novel ordering of the underlying
objects, which can hinder debugging and efficient ranking/unranking (see Section 1.1.3).

For example, [11] creates a novel order, and its provided C code includes over 100 instances of
the if and else keywords. In contrast, we generate a familiar variant of lexicographic order
and our C implementation requires only 4 instances of if and else; see [12] or the Appendix.

1.1.3 Simultaneous Gray Codes
Suppose that X and Y are sets of combinatorial objects that are in one-to-one correspondence
according to bijection f : X → Y . If x1, x2, . . . , xm is a Gray code for X, then we may ask
whether the corresponding order for the objects in Y , namely f(x1), f(x2), . . . , f(xm), is also
a Gray code. If this is true, then we refer to the order as a simultaneous Gray code for X

and Y according to f . As a trivial example, let Xn be the set of n-bit binary strings, and Yn

be the set of subsets of [n] = {1, 2, . . . , n}, with f : Xn → Yn mapping each incidence vector
b1b2 · · · bn to its subset. In this case, the binary reflected Gray code provides an ordering
of Xn in which successive strings differ in a single bit, and the corresponding subsets in Yn

differ by adding or removing one element, as seen for n = 3 in (2) and (3), respectively.

000 001 011 010 110 111 101 100 (2)
∅ {3} {2, 3} {2} {1, 2} {1, 2, 3} {1, 3} {1} (3)

The literature features relatively few non-trivial simultaneous Gray codes2. This scarcity
is in part due to the difficulty in finding such orders. To illustrate this important point, let
us consider the goal of constructing a simultaneous Gray code for Dyck words and ordered
trees. During this discussion, we’ll use the standard mapping of an ordered tree T with n− 1
nodes to a Dyck word of order n found in Stanley’s Catalan Addendum [31]:

Conduct a preorder traversal of the ordered tree T , and record 1 when going down an
edge, and 0 when going up an edge.

Figure 3a illustrates this mapping, where Dyck(T ) is the Dyck word corresponding to T .
One of the simplest operations on strings, including Dyck words, is an adjacent-

transposition, which replaces a substring xy with yx. An adjacent-transposition is also
known as a swap. Figure 3b illustrates how a swap in a Dyck word affects the corresponding
ordered tree.

To understand Figure 3b, first note that a 10 substring in a Dyck word corresponds to a
leaf in an ordered tree. Swapping 10 to 01 causes the leaf (shown in gold) to become the
next sibling of its parent (purple) with its rightward siblings (gold) becoming its children.
As a result, this small change in a Dyck word does not correspond to a constant amount of
work in the ordered trees, so long as the nodes have parent pointers. Hence, a swap Gray
code for Dyck words won’t provide a simultaneous Gray codes for ordered trees, unless (a) a
non-standard bijection is used, (b) parent pointers are omitted, or (c) the swaps used can
be further constrained to change fewer parent pointers. There is another complication with
this proposed approach: Swap Gray codes don’t always exist for Dyck words3 [20, 22].

2 A recent exception involves Baxter permutations and mosaic floorplans that arise in VLSI design [38]. A
Gray code for Baxter permutations was found by generalizing the greedy interpretation of plain change
order [36], and it provides a simultaneous Gray code for mosaic floorplans according to the bijection
in [1]. More broadly, Algorithm J [9] generates a jump Gray code for various types of pattern-avoiding
permutations and simultaneously orders various types of rectangulations by flips and wall-slides [15].

3 A 2-swap Gray code of Dyck words does exist by Vajnovszki and Walsh [33]. Their order uses swaps
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0
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3

4

5

6

7 8 9

11

10

Dyck(T ) = 1110010011101010001100.

(a) During a preorder traversal of T , record 1 when
going down an edge (purple) and 0 when going up an
edge (gold) to obtain its corresponding Dyck word.

1
······

······

0

······

Before swapping 10.

0

······

······

1
······

After swapped to 01.

(b) A swap in a Dyck word can change an arbitrary
number of parent pointers. Specifically, the root of
each gold subtree has a new parent.

Figure 3 With the standard bijection between Dyck words and ordered trees in (a), a swap in a
Dyck word can cause a non-constant amount of change in the corresponding ordered tree as shown
in (b). This illustrates the difficulty in constructing simultaneous Gray codes.

Cool-lex order is a variation of co-lexicographic order that was first introduced for (s, t)-
combinations by Ruskey and Williams [25] in the latter’s PhD thesis [37]. Since then it has
been used to create Gray codes and efficient algorithms for a variety of combinatorial objects
[35, 23, 28, 24, 5, 3], with recent examples including multiset necklaces [29] and fixed-content
Łukasiewicz words [13]. In particular, the application of cool-lex order to Dyck words [25]
is relevant later in the article. Besides its familiarity, cool-lex order also provides efficient
ranking and unranking of Dyck words [25] (and k-ary [6] and 1

k -ary Dyck words [5]), which
means that the position of any word can be determined, as can the word in any position,
using only O(n) arithmetic operations. Hence, our Gray code of ordered trees can be ranked
and unranked just as efficiently, since the standard bijection runs in linear-time.

1.2 Outline

Section 2 discusses ordered trees in more detail. Section 3 provides our Gray code, and
Section 4 generates it efficiently. Correctness is proven in Section 5 and Section 6 has final
remarks. C implementations with or without parent pointers are in the appendices and [12].

2 Ordered Trees

In this section, we provide background information on ordered trees, starting with terminology
in Section 2.1 and link-based representations in Section 2.2. Then in Section 2.3 we introduce
the stack-based pull operation, and a further specialization in Section 2.4.

2.1 Terminology and Conventions

Throughout the article, we typeset ordered trees as T , and we use n to denote the number
of nodes in a tree. We typeset nodes of a tree as X, and we frequently refer to a node and
the subtree rooted at that node interchangeably. Code is written with a monospaced font.

and two-close transpositions, which replace a substring 100 with 001 (or vice versa) and which can be
realized using two swaps. This would be a good candidate for simultaneous Gray code, so long as parent
pointers could be avoided. Its loopless pseudocode is relatively compact, containing only 17 if and
else keywords, but this is still significantly more complicated than our result.

ISAAC 2022
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When discussing ordered tree T , we use the term first branching, and this term could be
misinterpreted. We intend it to mean the following: The first branching occurs when the
preorder traversal goes up an edge, and then down an edge, for the first time. The node that
is incident to both of these edges is the parent of the first branching. For example, these
first branches are highlighted in turquoise in Figure 6. In particular, note that the subtree to
the left of the first branch must be a path (see Lemma 2).

Another way of describing the first branching is as follows. Let O be the first second-child
node that is visited during a preorder traversal. If P is the parent of O, then P is the parent
of the first branching.

2.2 Link-Based Representations
We focus on link-based representations of ordered trees, meaning that children are linked by
pointers or references. There are at least two natural variations, as discussed below.

Each node has a first child reference and a right sibling reference. The children of a
given node o form a linked list [o.first, o.first.right, o.first.right.right...].
In particular, a leaf o has a o.first == null, while a rightmost child of a node has
o.right == null.
Each node has a child array and a number of children. In particular, a leaf o has
o.num == 0 and o.child[0] == null (using 0-based indexing).

We refer to the first as a linked list representation and the second as a link array representation.
Throughout this paper, we treat the children of a node as a stack. Since stacks can be

implemented with constant-time operations using a linked list or an array, this allows us to
ignore the specific type of link-based representation. However, our focus is on the linked list
representation.

2.3 Stack Operations: Pop, Push, and Pull
Given an ordered tree T and a non-leaf node A, let popT (A) remove the first subtree of A

and return it. In other words, if the child-list of A is viewed as a stack, then this operation
pops the stack. In particular, if A has only one child in T , then A will be a leaf in popT (A).

If S is a non-empty ordered tree, then let pushT (A,S) be the result of adding S as a new
first subtree to node A. In other words, if the child-list of A is viewed as a stack, then this
operation pushes a new subtree S onto the stack. In particular, if A is a leaf in T , then A

will have one child in pushT (A,S).
We combine these two operations by popping a node, and then pushing the removed

subtree into the tree that was created by the pop. Note that the tree that results from this
combined operation will have the same number of nodes as the original tree. Furthermore,
the resulting ordered tree differs from the original ordered tree, if and only if, the nodes that
are popped and pushed are not the same.

We refer to the combined pop-push operation as a pull, and we define it as follows

pullT (A, B) is pushT ′(A, popT (B)) where T ′ is the modification of T after popping. (4)

We think of pullT (A, B) as node A pulling the first subtree off of B and adding it as its own
first child. For this reason, we’ll illustrate the operation with an arrow from B to A that
shows how the subtree is pulled toward A.

Finally, we also use a double pull, which pulls from a given node twice in a row. In other
words, the first subtree is pulled from the node, and then the new first subtree is pulled from
the node. We define the operation and its notation as follows.

pullT (A; C, B) is pullT (A, B) then pullT ′(C, B), where T ′ is created by the first pull. (5)
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▷ A pulls B’s first child
function pull(A, B)

temp← B.first

B.first← temp.right

temp.right← A.first

A.first← temp

temp.parent← A

// A pulls B's first child.
node *pull(node *A, node *B){

node *temp = B.first;
B.first = temp.right;
temp.right = A.first;
A.first = temp;
temp.parent = A;

}

Figure 4 The pull operation can be implemented as a pop followed by a push, namely, pull(A,B)
is push(A, pop(B)). It can also be implemented directly, as shown above in pseudocode and C. The
pulled node must not be a leaf.

In other words, A and C both pull B: B’s first subtree becomes A’s new first subtree,
then B’s new first subtree becomes C’s new first subtree. When illustrating the double pull
in Figure 5, we use gold for the first pull (from G), and purple for the second (from root).

2.4 Path-Pulls
We refer to a pull operation as a path-pull if the pulled subtree is a path. All of the pull
operations used in our Gray code are path-pulls. This distinction does not change the
efficiency of the operation, but it will become relevant in Section 5. The following lemma
states that pulling on the left side of the first branching is always a path-pull.

▶ Lemma 2. If T is an ordered tree, and P be the parent of its first branching, then the
operation pullT (X, P ) is a path-pull for any node X ̸= P .

Proof. Since P is the parent of the first branching, all of the nodes in the first subtree of P

must have only one child. Hence, the first subtree of P is a path. ◀

3 Gray Code order using Pulls

This section defines the order in which we generate ordered trees with n nodes. The order is
built one tree at a time by a successor rule whose origin is based on Theorem 5 in Section 5.

3.1 First and Last Trees
Our order starts and ends with two path-like trees.

The first tree T1 has a root with two children, and the subtree rooted at the second-child
is a path of length n− 2.
The last tree T0 is the unique path on n nodes.

For examples of these trees, refer to the beginning and end of Figure 6.
The rest of the order is generated by a successor rule, which transform any ordered tree –

other than T0 – into the next ordered tree.

3.2 Successor Rule
Given an ordered tree T that is not a path (i.e., T ≠ T0), we distinguish several nodes that
will be referenced by the successor rule. Let O be the first second-child that is visited during
a preorder traversal of T , and P be its parent, and G be its grandparent. In other words,
P is the parent of the first branching that is traversed during a preorder traversal of T ,

ISAAC 2022
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meaning that the traversal goes up into P and back down into its second-child O. Note that
P and O are well-defined so long as T ≠ T0, while G is only well-defined when the parent P

is not the root of the tree T . Given these nodes, the successor rule can now be stated.

next(T ) =
{ pullT (O, P ) if P = root or O has a child (6c)

pullT (G; root, P ) otherwise (i.e. P ̸= root and O is a leaf) (6d)
Figure 5 illustrates the pulls used in (6), while Figure 6 illustrates the full order for n = 6.

P

O

root

···

···

···

Current tree T where P = root or O is not a leaf.

root

P

O

···

···

···

New tree T ′ is obtained by pullT (O, P ).

(a) Case 6c. After the pull, the new value of node O is updated to be the new second-child of O (if
non-null) or the new second-child of P (if non-null), or null. The pull is equivalent to push(O, pop(P )).

P

···
O

···

root

G ···

Current tree T where P ̸= root
and O is a leaf.

root

P ···

G ···

···
O

Intermediate tree I is obtained
by pullT (G, P ).

root

P

O

···

G ···

···

New tree T ′ is obtained by
pullI(root, P ).

(b) Case 6d. After the pull, the new value of node O is updated to be the new second-child of root.
The pull operations are equivalent to push(G, pop(P )) followed by push(root, pop(P )).

Figure 5 Our pull Gray code is generated by the two case successor rule in (6), which transforms
the current ordered tree T into the new next ordered tree T ′ using one or two pulls. In these figures,
O is the first node in a preorder traversal that is not on the path from the root to the leftmost
descendent, and P is its parent, and G is its grandparent (if applicable). White circles denote
non-null nodes, and grey triangles denote an unspecified number of children and subtrees. The pull
operations, which are always path-pulls, are highlighted. The first pulling node and pulled path are
in gold, while the second are in purple. The captions also explain how to update the value of O.

4 Loopless implementation

In this section, we show how to generate the order proposed in Section 3.2 by a loopless
algorithm that we refer to as Algorithm O.

Algorithm O first creates an initial tree T1. Then it repeatedly applies the successor rule
in (6). To apply the rule, the algorithm tracks node O, with Figure 5 illustrating how its
location changes after each application of (6). Given O’s location, the pointer updates can
be easily inferred from Figure 5. The rule is applied, and the next tree is visited, until the
final tree T0 is created. This termination condition occurs exactly when O is set to null.
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Tree Dyck word Next

1011110000 (6c)

1101110000 (6c)

1110110000 (6c)

1111010000 (6d)

1011101000 (6c)

1101101000 (6c)

1110101000 (6d)

1011011000 (6c)

1101011000 (6d)

1010111000 (6c)

1100111000 (6c)

1110011000 (6c)

Tree Dyck word Next

1111001000 (6d)

1011100100 (6c)

1101100100 (6c)

1110100100 (6d)

1011010100 (6c)

1101010100 (6d)

1010110100 (6c)

1100110100 (6c)

1110010100 (6d)

1011001100 (6c)

1101001100 (6d)

1010101100 (6c)

1100101100 (6c)

1110010100 (6c)

1111000100 (6d)

Tree Dyck word Next

1011100010 (6c)

1101100010 (6c)

1110100010 (6d)

1011010010 (6c)

1101010010 (6d)

1010110010 (6c)

1100110010 (6c)

1110010010 (6d)

1011001010 (6c)

1101001010 (6d)

1010101010 (6c)

1100101010 (6c)

1110001010 (6c)

1111000010 (6c)

1111100000

Figure 6 The ordered trees with n = 6 nodes as generated by our algorithm. The next tree is
obtained by pull(O, P ) when (6c) is specified, or by pull(G; root, P ) when (6d) is specified. These
nodes are situated around the first branching that is traversed during a preorder traversal, which is
highlighted in turquoise. More specifically, O is the second-child of this branching, P is its parent,
and G is its grandparent. The last tree is the unique tree which has no such branching. Each tree is
displayed beside its corresponding Dyck word. Each Dyck word can be transformed into its successor
by left-shifting the highlighted bit into the second position, as discussed in Theorem 5.

Figure 7 gives the algorithm in pseudocode and C. A complete C implementation (with
arguments parsing, initialization, and visit routines) can be found in the appendix or [12].

5 Connection to Cool-lex Order for Dyck Words

We now prove that the order from Section 3 is correct, in the sense that it generates every
ordered tree with n nodes, starting from T1 and ending at the path T0. Our approach is to
understand the successor rule from Section 3.2 in terms of Dyck words. We start by showing

ISAAC 2022
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function cool-ordered-trees(n)
▷ Generate initial tree
O ← root.first.right

visit(root)
while O ̸= NULL do

P ← O.parent

if O.first ̸= NULL then
pull(O, P )
O ← O.first.right

else
if O.parent == root then

pull(O, P )
else

pull(P.parent, P )
pull(root, P )

O ← O.right

visit(root)

(a) Generate all ordered trees with n + 1 nodes.

void coolOtree(int n){
node* root = get_initial_tree(n);
node* o=root->first->right;
visit(root);
while(o){

p=o->parent;
if (o->first) { // if o has a child

pull(o,p);
o = o->first->right;

} else {
if (p == root) { // if o's parent

// is root
pull(o,p);

} else {
pull(p->parent,p);
pull(root,p);

}
o = o->right;

}
visit(root);

}
}

(b) C implementation of coolOtree.

Figure 7 Algorithm O is presented in pseudocode in (a), and its main function in C is in (b).

how certain pull operations in ordered trees translate to changes in the associated Dyck
words in Section 5.1. In Section 5.2, we recall the successor rule for generating Dyck words in
cool-lex order from [25]. Finally, in Section 5.3, we prove that the successor rule for ordered
trees proceeds in the same way as the cool-lex rule for Dyck words. In other words, our
successor rule for ordered trees is guaranteed to generate all Cn−1 ordered trees because the
corresponding Dyck words are generated in cool-lex order.

5.1 Pulls in Ordered Trees and Shifts in Dyck Words
Now we attempt to understand how the path-pulls in (6) translate to changes in the associated
Dyck words. We’ll find that the changes are shifts, which moves one bit elsewhere in the
Dyck word. In particular, a left-shift moves a bit to the left, and a right-shift moves a bit
to the right. We present two lemmas that mirror the cases in (6) and their depictions in
Figure 8. Our first lemma is associated with the single pull used in (6c).

▶ Lemma 3. Let T be an ordered tree that is not a path and let O be the first node in
a preorder traversal that is not a first-child, and P be its parent. Let T ′ be the result of
pullT (O, P ). Then there exists p ≥ q ≥ 1 and an α ∈ {0, 1}∗ in which

Dyck(T ) = 1p0q1α and Dyck(T ′) = 11p0qα. (7)

In other words, the 1 at index p + q + 1 is shifted to index 1.

Proof. From Figure 8a, we can see that pullT (O, P ) transforms T into T ′ with

Dyck(T ) = 1a11b0b01α and Dyck(T ′) = 1a111b0b0α.

Therefore, the result follows by setting p = a + b + 1 and q = b + 1. This is because
Dyck(T ) = 1a11b0b01α = 1p0q1α and Dyck(T ′) = 1a111b0b0α = 11p0qα. ◀
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The second lemma considers the double pull used in (6d).

▶ Lemma 4. Suppose that (6d) transforms T into T ′. That is, T is an ordered tree that is
not a path, where O is a non-leaf node that is the first node in a preorder traversal that is
not a first-child, P ̸= root is its parent, G is its grandparent, I is the result of pullT (G, P ),
and T ′ is the result of pullI(root, P ). Then there exists p < q and an α ∈ {0, 1}∗ in which

Dyck(T ) = 1p0q10α and Dyck(T ′) = 101p−10q1α. (8)

In other words, the 0 at index p + q + 2 is shifted to index 2.

Proof. From Figure 8b, we can see that pullT (G, P ) transforms T into I with

Dyck(T ) = 1a111b0b010α and Dyck(I) = 1a11b0b0110α.

Then Figure 8c, shows that pullI(root, P ) transforms I into T ′ with

Dyck(I) = 1a11b0b0110α and Dyck(T ′) = 101a11b0b01α.

Therefore, the result follows by setting p = a + b + 2 and q = b + 1. This is because
Dyck(T ) = 1a111b0b010α = 1p0q10α and Dyck(T ′) = 101a11b0b01α = 101p−10q1α. ◀

5.2 Cool-lex Order for Dyck Words
Dyck words of order n can be generated by a simple successor rule [25]. The resulting order
can be understood as a sublist of the cool-lex order of (n, n)-combinations [26] or binary
strings of length 2n [32], and as a special case of the order for bubble languages [23] or
fixed-content Łukasiewicz words [13] both of which can be generated efficiently [28, 13].
However, these string results have no immediate implications for generating ordered trees.

▶ Theorem 5 ([25]). Dyck words of order n are generated in cool-lex order starting from
101n−10n−1 by the following successor rule, where α ∈ {0, 1}∗ denotes an unchanged suffix.
(a) If the current string equals 1p0q11α or 1p0p10α, then the next string is 11p0q1α or

11p0p0α, respectively. In other words, the 1 at index p + q + 1 is shifted to index 1.
(b) If the current string equals 1p0q10α with p > q, then the next string is 101p−10q1α. In

other words, the 0 at index p + q + 2 is shifted to index 2.
The only string that is not covered by one of these cases is the last Dyck word, 1n0n.

Notice that in each case of Theorem 5, the next string is obtained by a left-shift. In other
words, a single symbol is deleted, and then reinserted somewhere to the left

5.3 Proof of Correctness
Proof of Theorem 1. It is clear that Algorithm O in Figure 7 is loopless and correctly
implements the order defined in Section 3. What remains to be proven is that the algorithm
actually generates all of the ordered trees with n nodes. The proof equates the successor (6)
for ordered trees into the cool-lex rule for Dyck words of order n− 1.

Observe that the first ordered tree T1 has Dyck(T1) = 101n−20n−2, which matches the
first string in the cool-lex order of Dyck words. Similarly, the last ordered tree T0 has
Dyck(T0) = 1n−10n−1, which matches the last string. It remains to be proven that the
successor rule for ordered trees in (6) matches the cool-lex successor rule for Dyck words.
Fortunately, this follows immediately from Lemmas 3–4 and Theorem 5. ◀

ISAAC 2022
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Ordered tree T with Dyck(T ) = 1a11b0b01α.
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Ordered tree T ′ with Dyck(T ′) = 1a111b0b0α.

(a) The Dyck word is modified by shifting a single 1 to the left during the operation pullT (O, P ).
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Ordered tree T with
Dyck(T ) = 1a111b0b0α.
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Ordered tree I with
Dyck(I) = 1a11b0b01α.

(b) The Dyck word is modified by shifting a single 1
to the right during the operation pullT (G, P ).

···
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1
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Ordered tree I
with Dyck(I) =
1a11b0b0110α.
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···
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Ordered tree T ′

with Dyck(T ′) =
101a11b0b01α.

(c) The Dyck word is modified by shifting 10 to the
left during the operation pullI(root, P ).

Figure 8 Illustrating how several path-pull operations change the corresponding Dyck words.
Lemmas 3–4 are illustrated in (a)–(c), with the first mirroring the pull in (6c) and Figure 5a, and
the latter two mirroring the double pulls in (6d) and Figure 5b, respectively. Blue and red arrows
indicate 1 and 0 bits during a preorder traversal, respectively, with green reserved for changes, and
gray for suffixes that do not change.

6 Final Remarks

In this article, we provided a 2-pull Gray code for ordered trees and a loopless algorithm for
generating it. Our work also completes a simultaneous Gray code for Dyck words, ordered
trees, and binary trees [25], which are three of the foremost Catalan structures.

6.1 Additional Results

Our presentation of pseudocode and C code is focused on the linked list implementation of
the link-based representation of an ordered tree, however, the same results hold when using
link arrays. This is because the children of a node can be stored in an array of sufficient size,
and each pop and push can be performed at the end of the array.

The cool-lex order of Dyck words was also used to create a loopless algorithm for binary
trees in [25]. By storing an additional pointer to a node’s left sibling, it is possible to augment
our algorithms so that they simultaneously output a Gray code of ordered trees and binary
trees. We are looking forward to publishing this in an extended version of the paper.
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6.2 Open Problems
We showed that two pulls are sufficient for listing ordered trees, even when the pulled subtrees
are always paths. This raises two follow-up questions.

Is there a 1-pull Gray code for ordered trees?
Is there a 1-path-pull Gray code for ordered trees?

Ideally, a positive answer would also be accompanied by an efficient algorithm.
Finally, we mention that generalizations of Catalan objects were recently ordered and

generated by Cardinal, Merino and Mütze [4] using Algorithm J. This opens the door to
considering further generalizations of the results found in this article.
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A C Implementation – With Parent Pointer

#include <stdio.h>
#include <stdlib.h>
typedef struct node { struct node *parent, *first, *right; } node;

void pull(node *A, node *B){
node *child = B->first;
B->first = child->right;
child->right = A->first;
A->first = child;
child->parent = A;

}

void visit(node* root){ // prints an ordered tree as a Dyck word
node* child = root->first;
while(child){

putchar('1');
visit(child);
child = child->right;
putchar('0');

}
if (!root->parent) putchar('\n');

}

void coolOtree(int n) {
node* root = (node*)calloc(sizeof(node),1);
node* curr = root;
for(int i = 0; i < n; i++){

curr->first = (node*)calloc(sizeof(node),1);
curr->first->parent=curr;
curr=curr->first;

}
pull(root,curr->parent);
node *p, *o = root->first->right;
visit(root);
while (o) {

p=o->parent;
if (o->first) { // if o has a child, o pulls p

pull(o,p);
o = o->first->right;

} else {
if (p == root) { // if p is the root, o pulls p

pull(o,p);
} else { // otherwise, g pulls p and root pulls p

pull(p->parent,p);
pull(root,p);

}
o = o->right;

}
visit(root);

}
}

int main(int argc, char **argv) { coolOtree(atoi(argv[1])); }
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B C Implementation – Without Parent Pointer

#include <stdio.h>
#include <stdlib.h>
typedef struct node { struct node *first; struct node *right; } node;

void pull(node *A, node *B){
node *pulled = B->first;
B->first = pulled->right;
pulled->right = A->first;
A->first = pulled;

}

void visitrec(node* n){ // prints an ordered tree as a Dyck word;
node* child = n->first;
while(child){

putchar('1');
visitrec(child);
child = child->right;
putchar('0');

}
}
void visit(node* n){ visitrec(n); putchar('\n');}

void coolOtree(int n) {
node *root = (node*)calloc(sizeof(node),1);
node *prev, *curr = root;
for(int i = 0; i < n; i++){

curr->first = (node*)calloc(sizeof(node),1);
prev=curr;
curr=curr->first;

}
pull(root,prev);
node *p=root, *g=NULL, *o = root->first->right;
visit(root);
while (o) {

if (o->first) { // if o has a child, o pulls p
pull(o,p);
g=p;
p=o;
o = o->first->right;

} else {
if (p == root) { // if p is the root, o pulls p

pull(o,p);
} else { // otherwise, g pulls p and root pulls p

pull(g,p);
pull(root,p);
p=root; //g could be set to null

}
o = o->right;

}
visit(root);

}
}
int main(int argc, char **argv) { coolOtree(atoi(argv[1])); }
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